
Chapter 3

A brief introduction to the

theory of computation

It might surprise younger readers that there could even be questions that
are undecidable, problems for which there can be no standardized procedure,
ever, that provides an answer!

In fact, undecidability is ubiquitous: The generic mathematical subject is
combinatorial— small repeating units interacting in highly restrained ways.
One might think of tiles, but also group elements, connected by generators
and relators; or of formal symbols, combined into well-formed logical ex-
pressions or equations. Even analysis, richly continuous, in many ways has
a discrete and combinatorial nature, reflected in the very formation of the
expressions we use in our work.

The theme of this book, more than a discussion of tilings, really, is
that combinatorial structures are inherently, generically inscrutable, in a
particular technical sense:

Given a particular class of object (say, “planar tiles”) and a question
(say, “does this tile admit a tiling?”) we can ask, is there an algorithm, a
procedure, to determine, upon being presented with an object in the class,
after a finite period of time, the answer to our question?

That is, is the question decidable? If no such algorithm exists, we say the
problem is undecidable. It is a wholly remarkable (even astounding!) fact
that there are undecidable problems. It is even more incredible that these
are in sense, generic!1

1One little aside must be made: If the class of objects is finite every problem is in fact
decidable. We may not know what the algorithm is, but it does exist: just look up the
answer in a table. So for example, it is decidable whether a particular given tile admits a

19

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



20CHAPTER 3. A BRIEF INTRODUCTION TO THE THEORY OF COMPUTATION

When presented with a combinatorial problem, we might wonder whether
or not it is decidable. If we find ourselves baffled, if there appears no corre-
lation between the structure of the object and the outcome to the problem,
we might apply Conway’s Presumption:

[[If a lot can happen, everything will happen.]]

In other words, the betting man will gamble on undecidability. (Right or
wrong, at least one is not likely to be contradicted!)

The “Halting Problem” is undecidable

Turing’s Halting Problem [?] is the touchstone undecidable problem: does

a given computational procedure halt with an answer or run forever?

We don’t really need to go deeply into Turing’s specific idea of what
computation is; there are many fine sources available. In fact, it suffices
to approach the whole topic rather näıvely: in essence, an algorithm is
simply some sort of formalized procedure, precise instructions to be followed
exactly. (We’ll use the words “program”, “procedure”, “computation” and
“algorithm” interchangeably.)

Unfortunately, most mathematics education, at least before our first ab-
stract courses, consists of memorizing just these sorts of detailed instructions–
for multiplication, adding fractions, plotting lines or conics, taking deriva-
tives, et cetera– so we are all quite familiar with the notion.

These instructions assume we are capable only of keeping track of where
we are and making simple notes to which we may refer as we go along. Now

an algorithm may be badly designed: for example

Start with 0;

repeatedly add 1 until you reach -10 and then stop.

It is pretty clear that this algorithm will never halt. We could consider
algorithms that allow some input, such as an arbitrary integer n:

tiling: the does exist an algorithm to answer the question. It is either the one that halts
with an answer yes or halts with an answer no. Unfortunately, we might not know which
is the correct algorithm!

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



THE “HALTING PROBLEM” IS UNDECIDABLE 21

Given an integer n;

repeatedly add 1 until you reach -10 and then stop.

Obviously, this algorithm halts if we begin with n < −10 and does not
halt if n ≥ −10. But, in general, whether or not a given algorithm halts can
be a quite subtle question!

It is known that the following algorithm halts for input n < 13 · 258 and
counting [8], but despite quite a lot of attention [9], no one is sure if it will
always halt, on every input:

Given a counting number n,

while n 6= 1

let n =

{
3n+1 if n is odd

n/2 if n is even

So for example, if we input n = 5, the algorithm next sets n = 3 ·5+1 =
16 then 8, 4, 2, and finally n = 1, at which point the algorithm stops.2 If you
doubt the trickiness of this algorithm, you might investigate its behavior
beginning with n = 27.

Now procedures themselves can be encoded as integers. The simplest
illustration of this lies in the hard drive of your computer. All of your
programs, photos, data, music— everything— is encoded in one tremendous
number. (On the computer I am now typing on, this number is something
like 2 800 billion, as I have a 100-gigabyte hard drive, holding about 800 billion
bits.)

The specific encoding depends entirely on our computing environment:
how do we write down and interpret instructions to carry out our proce-
dures? Different computer operating systems will encode procedures dif-
ferently, but in a much deeper way, there are many different “models of
computation”— different ways to conceive of what is computation, as well
as encode it. We don’t need to be too concerned with this here— suffice it
to say that models all are functionally as powerful as one another.3[[forward
ref]] Always, we are assuming that we are working in some specific, fixed

model; it is perfectly fine to imagine programming in your favorite language,
on your favorite machine, but with no memory or time constraints.

2If we allowed it to continue, the algorithm would then loop forever: 3 · 1+1 = 4, then
2, 1, 4, . . .

3In essence, this assertion is the “Church-Turing thesis”, the very foundation of the
Theory of Computation. [[good source??]]

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



22CHAPTER 3. A BRIEF INTRODUCTION TO THE THEORY OF COMPUTATION

Typically, only special numbers will encode valid, working programs.
The important thing, though, is that we can enumerate (list, by some pro-
cedure) all procedures, just by listing the counting numbers in turn and
discarding any that don’t encode a valid procedure. (Obviously, we will
never be able to complete such a list— but any given procedure will even-
tually show up, if we wait long enough.)

Let Pn be the nth procedure in our enumeration. For simplicity, assume
each Pn has one value it takes as input. Now we may formally ask the
Halting Problem:

Does a given procedure halt on a given input ?

More importantly, is there a general technique to tell? Is there a pro-

cedure H than can examine, as input, a given procedure P and counting

number m, and determine whether P will, with input m, halt in a finite

period of time?

Is there a procedure H that can always settle the Halting Problem for a
given P and m? Is the Halting Problem decidable?

The obvious H to try is to run P on input m and see what happens. If
P does eventually halt, sooner or later we will find out, though this may
take a very long while. But what can we conclude if P has not halted after,
say, one million years? Perhaps P will halt in a few more minutes, or a
trillion years— or not at all. In other words, the obvious test, running the
procedure to find out, is not guaranteed to give us a yes or no answer.

If we were more clever could we find an H? Using a simple an ingenious
trick, A. Turing proved that no such H exists, that the Halting Problem is
undecidable!

Suppose that in fact there were a procedure H that could take as input
n and, after a finite number of steps, determine whether the nth procedure,
Pn, halts on input n. We can modify H, obtaining a new procedure H′:

H′ takes as input an integer n, and then carries out H to find out whether
or not Pn does halt on input n. If it does, then H′ goes into an infinite loop
and if it does not, then H′ halts.

Now then, H′ is a procedure, and so appears somewhere in our initial
enumeration— for some h, H′ = Ph. But now consider, dear reader, what
happens when H′ is presented with h as input!

If, on this input, H′ were to halt, it could have only been because Ph

(which is of course H′ itself) failed to halt on input h, an impossibility.

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



COMPUTABLE FUNCTIONS 23

On the other hand, if H′ fails to halt on input h, then Ph— that is, H′—
halts on input h. That isn’t possible either.

We have a contradiction— H′ can neither halt nor not halt!— and there
could have been no H in the first place! There is no algorithm to decide the
Halting Problem.

But how special is this? Are only a few problems undecidable, in only a
few parts of mathematics? To the contrary! One can argue that the generic
mathematical problem is undecidable! (Though, naturally, the problems
mathematicians actually solve tend not to be.)

Computable Functions

A computable function is simply a function, on the counting numbers
say, for which we can compute its values. Pretty much any function on the
counting numbers that you’ve every seen is computable— all this means is
that you have an explicit description of how to work out its values.

It is not hard to give some computable functions that have astoundingly
large growth. For example, take

f(n) = nn
..

.n

, where the tower of exponents is n high

Things start out slow: f(1) = 1 and f(2) = 22 = 4 but f(3) = 327 and
f(4) = 44256

= 4 a 154-digit number. You might amuse yourself trying to un-
derstand the size of f(5), f(100) or f(f(100)).

I find the following function particularly appealing:

h(1) := 1, h(n) := n ! . . .!
︸︷︷︸

h(n−1)

h(2) = 2! = 2, not terribly exciting to be sure, but h(3) = 3!! = 6! = 720 and
then h(4) = 4 ! . . .!

︸︷︷︸

720

= 24 ! . . .!
︸︷︷︸

719

= 620, 448, 401, 733, 239, 439, 360, 000 ! . . .!
︸︷︷︸

718

=

??. I shudder to think of h(5).
But then consider h(h(n)), or worse h ◦ . . . ◦ h

︸ ︷︷ ︸

h(n)

, etc. One may amuse

oneself all day in this way. These functions are all computable, for the
simple reason that we have managed to describe them explicitly. For any of
these, it is no great trick to write a short program that, in principle, could
calculate its values.

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



24CHAPTER 3. A BRIEF INTRODUCTION TO THE THEORY OF COMPUTATION

And yet, and yet there are functions that are unbounded by any com-
putable function, functions that have no computable bound!

Take, for example, the Halting Function T : {1, 2, . . .} → {−1, 0, 1 . . .},
defined by

T (n) =

{
N if procedure Pn halts on input n after N steps
-1 if procedure Pn does not halt on input n

Not only is there no way to compute the values of this function, T cannot
be bounded by computable function! (On the other hand, we could say T

is “semicomputable”: there is a simple procedure that can decide in finite
time whether T (n) 6= −1: just run the nth program. The trouble is that
this procedure won’t ever tell you if the answer is −1.)

Suppose there were a computable function b so that b(n) > T (n) for all n.
Then we would have a simple procedure for deciding whether the procedure
Pn halts on input n: calculate b(n) and run Pn; if it hasn’t halted by the
time we’ve executed b(n) steps, then we’re in the clear— the procedure will
never halt. But we know the Halting Problem is undecidable; there can’t be
an algorithm to decide this— so there can’t have been a computable bound
on T .

Think for a moment what this means! If we list out procedures, say
in the order of their length, we’re going to have some pretty lame ones for
quite a long while. We cannot expect to see anything interesting until we
get quite far along. By this time, f(n), h(n) and the rest will have popped
off beyond the mathematical stratosphere.

Somehow, incredibly, T , on occasion, has to beat out every one of these,
and we can show, has to do so infinitely often.

The complexity of an integer

It is also worth considering the program-size complexity of a given inte-
ger. Every integer can be computed by a program that runs, and then halts,
with output N : one such program is N lines long: begin with 0 and then
add one, add one, add one ,. . . add one. Fixing a specific integer N , we can
obviously do better with

Calculate N

Set i = 0; while i < N

Increment i

Output i.

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



THE COMPLEXITY OF AN INTEGER 25

This is much shorter but still takes about log N symbols to write out—
because N itself has to be written out as part of the program; this takes
logb N symbols in whatever base b we are using to represent integers. Since b

is fixed (we have a fixed system for writing things out), logb N = 1
log b

log N ,
a constant multiple of log N . Of course the specific number of symbols
depends on our language and numbering system, but up to a constant, the
length is about right.

How much better can we do? We can obtain some truly staggering num-
bers with some very simple procedures: let us calculate Graham’s Number[?],
famously the largest number ever used in a mathematical theorem [?].

Graham’s number is so huge we must use some special symbols even to
describe it– the Knuth arrow notation. Just as multiplication is iterated
addition, and exponentiation ↑ is iterated multiplication, the operator ↑↑
is iterated exponentiation, ↑↑↑ is iterated ↑↑’ing, and so on. The function
f(n) in Section 3 is merely f(n) = n↑↑n. You might work out a few of
these: 3↑↑↑3 = 3↑↑3↑↑3 = 3↑↑(3↑3↑3) = 3↑↑(327) = 3↑3 . . . 3↑3

︸ ︷︷ ︸

327

, a tower of

exponents 327 tall! And this is just the beginning!4

This function u(a, b, n) eventually returns a ↑ . . . ↑
︸ ︷︷ ︸

n

b (after a very very

long while):

Calculate u(a, b, n)
Given counting numbers a, b, n

u(a, b, n) =







u(a, u(a, b − 1, n), n − 1) for b, n > 1
a b = 1
ab n = 0

But we have barely begun to construct Graham’s number! Let g1 :=
3↑↑↑↑3 (an incomprehensibly huge number already). Then g2 := 3 ↑ . . . ↑

︸ ︷︷ ︸

g1

3

(beyond incomprehensible) and so on: gi := 3 ↑ . . . ↑
︸ ︷︷ ︸

gi−1

3. Graham’s number is

(merely) g64:

Calculate Graham’s Number

Set i = 1,N = u(3, 3, 4)

4Amusingly, just as 2 + 2 = 2 × 2 = 2↑2 = 4, no matter how many ↑’s we use,
2↑ . . . ↑2 = 4 as well.

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



26CHAPTER 3. A BRIEF INTRODUCTION TO THE THEORY OF COMPUTATION

While i < 64
Set N = u(3, 3,N) and increment i

Output N

All in all, the full algorithm took a total of just a few dozen characters to
write out, and one could expect that we might do better with adjustments to
the language we used. Graham’s number has low program-size complexity.

Fixing a model of computation, we can ask, what is the length F (n) of
the shortest program that calculates a given integer n? We have an upper
bound: F (n) is no longer than the number of digits in n, in whatever base
we are using. And in some cases, F (n) can be miniscule, compared with n.

But amusingly, on average, F (n) is a constant multiple of log n, for the
very simple reason that there are only about n programs of length log n!
Fixing a language and number base k, the generic integer has no shorter
representation than its expansion base k. The generic integer is fundamen-
tally complicated to describe!

Turing machines

Let us return to the notion of “procedure” or “algorithm”. What really is a
“computation”?

In 1936, Alan Turing proposed a simple model of computation which
has stood the test of time. Many other mathematical systems have been
shown to be equivalently powerful (and simpler to exploit) but Turing’s
model remains among the most intuitively clear.

How do you, the reader, carry out a computation? You follow some
specified, finite list of instructions (which you might have memorized, or you
might be reading), and have some capacity for keeping track of information,
such as a limitless pad of paper.

At each stage, we might be read off of the notepad, follow an instruction,
perhaps write something new, and find the next instruction. Turing’s insight
was that this is pretty much the whole story.

Whatever we can accomplish by this means, a “Turing machine” can
do just as well. Imagine first a mechanical insect that can walk about the
notepad, its instructions hard-wired into its brain. At each step, the insect is
in a certain “state”, prepared to carry out a particular act, such as moving
a little ways, reading, erasing or writing a symbol, or changing over into
another state. This is exactly what we ourselves do when we carry out a

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



TURING MACHINES 27

mechanical procedure, such as an algebraic manipulation, or long division.

Our states are thoughts such as “I am now carrying a 1” or “I am adding
these two numbers, getting ready to write the answer down” or “I am moving
my pen over to the edge of the paper, prepared to write a 7 when I get there”.

With a little imagination, we can do away with our notepad and make
do with a long tape: we arrange the rows of the notepad into a line, perhaps
placing marks for the end of each row. When our mechanical insect needs
more rows, it can mark off another bit of the tape; if it needs to extend a
row, it can mechanically scoot the other rows over to make more room.

We have reduced the original vision of a person, calculating on a pad
of paper, to a model of a simple machine, with a “head” that is in one of
a finite number of states, that reads a symbol on the tape; depending on
what the head is reading and its state, it may erase the symbol and write
a different one, step to the right or to the left, and change into a different
state. We also include a special “halt” state: if the machine ever reaches
this state, it stops and the computation is ended.

Sometimes we might require that a machine start on a blank tape, or
sometimes we will allow a machine to accept input, by starting on a tape
with some symbols already written on it.

This simple vision of computation is as powerful as any other, but in
practice, Turing machines are slow and inefficient. Their great advantage is
in their simplicity.

Here is a simple example, which merely “adds” two numbers, written as
strings of tick-marks on the tape. The machine has five states A,B,C,D

and E, plus the halt state H. We specify how the machine acts by the
following table:

A B C D E

0 0RA 1RC 0LD 0LD 0RH

1 1RB 1RB 1RC 0LE 1LE

That is, if the machine is in state B, reading a 0, it writes a 1, moves
one step to the right, and enters state C. Here is a portion of a run of the
machine, starting on a specially prepared tape.

Here is the initial run of the machine:

[[Figure]]

You might follow this to its conclusion– the machine will stop when it
reaches its halt state H.

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



28CHAPTER 3. A BRIEF INTRODUCTION TO THE THEORY OF COMPUTATION

This example is not particularly inspiring, but remember, as we described
above, every procedure can be encoded as the action of a Turing machine.
In practice, it’s not terribly difficult to construct a machine to carry out a
particular task, but usually [[the machine will be pretty ugly]].

Busy Beaver Candidates

On the other hand, some small machines can behave in the most amazing
ways. Consider the behavior of this remarkable machine [6]

A B C D E

0 1RB 1RC 1RD 1LA 1RH

1 1LC 1RB 0LE 1LD 0LA

If it begins on a blanked-out tape, marked with all 0’s, it will run for
a whopping 47, 176, 870 steps, printing out 4098 1’s on the tape before
halting[?, ?, ?].

It is not so interesting that such a machine might print out 1’s forever—
so what? On the other hand, it is truly incredible that a simple machine can
print exactly this many and just then come crashingly to a halt.

In 1962, Tibor Radó asked, for each given n, what is the greatest number
of steps that a machine with n states, and symbols 0, 1, beginning on a
blanked out tape, can run and then halt? How many 1’s can such a machine
print before halting?

(More generally, we might ask how long a machine with n states and m

symbols might run, and how many non-zero symbols it might print, before
halting)

Radó called the longest running machine of a given size a “Busy Beaver”
and the number of steps it runs, the Busy Beaver Function Σ(n).5

Precisely because the Halting Problem is undecidable, there can be no
computable function bounding Σ(n). For if there were, we could check
whether a given machine halts or not— calculate this bound and try to run
the machine for that many steps. If you succeed, then it will never halt, and
if not, then it did halt.

5Though there are a finite number of distinct Turing machines with n states, in general
there is no way to find a Busy Beaver among them. In practice, the number of machines
of a given size is astronomical. But more importantly, there will be good candidates that
one will never know whether they halt or not, whether they are in fact potential Busy
Beavers.

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



THE HALTING PROBLEM FOR TURING MACHINES 29

There should be small machines that run for a great long while, then
halt. And indeed there are: T. and S. Ligocki found this amazing machine
in 2007 [?] which runs for more than 7.6 × 10868 steps, printing out more
than 4.6 × 10434 non-zero symbols, then grinding to a halt.

A B C

0 1RB 0RC 1LB

1 0RB 1RH 2LA

2 3LC 2RC 3LA

3 1RC 3RC 2RB

H. Marxen and J. Buntrock, discovered a six-state machine, using just
the two symbols 0, 1, that runs for an astounding 3 × 101730 steps and then
halts, printing out more than 10865 1’s [].

A B C D E F

0 1RB 0RC 1LD 0LE 0RA 1LA

1 0LF 0RD 1RE 0LD 1RC 1RH

Even a machine with a small number of states, working with just a few
symbols can behave utterly inscrutably.

Seeing such examples, a mathematician asks why? Why do these behave
as they do? Can we design even stranger machines? (Or for that matter,
understand the limits of how strangely a machine can behave?) This is
fundamentally what mathematicians try to do: reduce complicated, unruly
structure to simplified observations— theorems— describing how things are.

As we shall see in a moment, the underlying undecidability of the Halting
Problem implies that these machines behave as they do for no good reason

at all!

That a given machine halts in after certain number of steps is a mathe-
matical statement, and can be proven (simply by running the machine and
checking). Nontheless, as we shall discuss further, in some fundamental, real
sense, the behavior of these machines, in general, is beyond mathematical
description, is beyond mathematics.

The Halting Problem for Turing machines

We first pause to recast the Halting Problem in terms of Turing machines:
Is there a procedure for deciding whether a given Turing machine eventually
reaches its halt state? The same argument we gave before still applies.

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



30CHAPTER 3. A BRIEF INTRODUCTION TO THE THEORY OF COMPUTATION

Just as we enumerated procedures, we can enumerate Turing machines,
listing all possible machines, in some order, one after the other. We could
pick some convention, maybe even the one I used to type the tables above,
describing each machine as a string of symbols. We can then enumerate all
possible strings, keeping only those that are not malformed and do describe
working machines.

We can ask, does the nth machine Mn eventually halt, if it begins to
run a tape marked with the number n (written out as a string of symbols)?

Is there a machine H that can decide if the nth machine eventually halts
or not? That is, is there a machine that, if it begins on a tape marked n,
eventually halts, writing “Y E S” on the tape if Mn halts on input n, or
“N O” if it does not?

As before, no such machine can exist, for if there were, we could design
a new machine H′ that instead of writing out an answer and halting, either
fails to halt (if Mn halts on n), or does halt (if Mn does not). As before,
H′ appears somewhere on our list of all machines; and so is Mh for some h.
And exaclty as before, we have a contradiction: H′ halts on h if and only
if it does not. No such H′, nor H, can exist and the Halting Problem is
undecidable for Turing machines.

All we have really done is to formalize, a little more, the ideas we laid
out in Section 3.

If a Turing machines does halt, why does it do so?

Why do the strange Turing machines we have just seen halt as they do?

It is productive to take a step back and ask: What do we mean when we

say that something happens for a reason?

If we are discussing a mathematical fact, we might just mean that the
fact can be proven— the proof itself is the “reason” that the fact is true.

But if a proof is very, very long, perhaps so long that no human could
really understand it in any detail, then the proof is certainly not a very good

reason. A “good” reason, fundamentally, is a short proof, some argument
that one human being can convey to another that a fact is really true.

Let’s fix some sort of reasonable system of logic— the specific details
are not so important for us here and we really can approach this topic
fairly näıvely. But we mean a way of writing down logical expressions, and

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



IF A TURING MACHINES DOES HALT, WHY DOES IT DO SO? 31

a collection of formal rules for manipulating them. In such a scheme, if
we can manipulate an expression— a theorem— eventually obtaining an
expression which is patently true, then we have a proof.

In order to be of any use, a logical system should be reasonably powerful,
but free of inconsistencies.6 Any reasonable logical system, first of all, should
at least be powerful enough to be able to prove that a given Turing machine
halts, if in fact it does, just by tracking the machine’s behavior. [[This might
need more elaboration]]

And we should be able to design a Turing machine that can check to
see whether a proof in our reasonable system is correct, just by making sure
that all of our logical steps have been carried out appropriately. [[This might
need more elaboration]]

Since our system is written in only a finite number of symbols, we can
enumerate all possible strings. Since in our reasonable system we check
whether a string encodes a valid proof, we can discard those that don’t, and
so have a procedure for enumerating all possible proofs. That is, there is
some Turing machine that generates, in turn all possible proofs.

And of course, we also want our reasonable system to only include state-
ments that are true or are false but are never both! A system with inherent
contradictions is not of much use.

It is not easy to really pin down all the details— designing such systems
was a great endeavor involving many mathematicians of the early 20th Cen-
tury [[ref and cite; also Turing’s 1936 paper]]. But it is easy to believe that
it can be done, and implicitly we use this belief in every proof we write.

Once we have fixed a reasonable logical system, we can define the proof
complexity of a provable statement as the length of its shortest proof;
informally, then, a statement has a “good reason” if its proof complexity is
relatively low.

If a Turing machine halts, we can prove this (just by running the ma-
chine, described as a series of logical statements). But this proof may be
much longer than the shortest possible proof— there might be a much sim-
pler reason why the machine gets around to halting. So what can we say
about the proof complexity of a given machine’s halting?

In our enumeration of all possible Turing machines, some will halt, and
some will not (starting, say, on a blank tape). Let M′

n be the nth Turing

6As we shall shortly see, [[Gödel]]

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



32CHAPTER 3. A BRIEF INTRODUCTION TO THE THEORY OF COMPUTATION

machine that does halt— we have no way of knowing which machine this
is, in general, since the Halting problem is undecidable, but M′

n is well-
defined— and let P (n) be the proof complexity of the fact that it halts.

Amazingly, P (n) cannot be bounded by any computable function! In
other words, many machines halt for no good reason at all! Indeed, since
P (n) is no greater than H(n), we may say that, in a sense, the machines
that run the longest are the least reasonable in doing so!

Suppose P (n) were bounded by a computable function, say b(n). Then
we would have a procedure for deciding whether the nth machine halts:

The nth halting machine is also the mth machine overall, for some m ≥
n. Now we can calculate B = max

k≤m
b(k) and enumerate all possible proofs

of length up to B. We have assumed that we can check whether a proof is
valid, and so whether a proof demonstrates a given theorem, namely that
M′

n halts.

We can check, one by one, whether any of the proofs we’ve listed proves
that M′

n halts. If any does, of course, then the machine does halt. Con-
versely, if M′

n does halt, one of the proofs we listed will have to prove this
is so, since b(n) ≤ max

k≤m
b(k) = B.

Consequently, no such b(n) can exist and P (n) cannot be bounded by
any computable function!

Gödel’s Theorem

At the beginning of the 20th century, many mathematicians attempted to
construct a solid logical foundation for all of mathematics, a systematic
collection of logical rules from which all of mathematics could be built, [[the
kinds of “reasonable logical systems” we discussed above]].

A reasonable logical system should be powerful enough to capture at
least simple mathematical truths, such as the arithmetic properties of the
counting numbers, or proving a given Turing machine halts or not. Its
statements and proofs should be in some regular syntax, and thus possible,
with some procedure, to check to see whether they are correct and to list
out.

And it should be free of inconsistencies. We would also hope, though,
that a reasonable system would be “complete” as well, able to prove any
statement that happened to be true within it. In other words, we would not
expect that there might be true but unprovable theorems!

In 1931, Kurt Gödel proved a remarkable theorem, in effect that there

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



ONE FINAL NOTE 33

can be no reasonable logical system that is complete, that every reasonable
logical system must have true but unprovable theorems! And indeed, Gödel
proved this.

Indeed, there must be an infinite collection of such theorems, as the
Halting Problem shows us:

In our enumeration of all possible Turing machines, let T (n) be the
statement that the nth machine halts. Either T (n) is true (the machine
does halt), or its negation T ′(n) is true (the machine does not actually
halt). If T (n) is true, there is a proof: run the machine. As we discussed
above, this may not be a particularly satisfying proof, and might be very
long, but T (n) is provable.

But there are some n for which T ′(n) is true, but has no proof! Suppose
that this were not the case, that every true T ′(n) could be proven. Then for
all n, there would be a proof of either T (n) or T ′(n). But then this gives a
procedure for solving the Halting Problem: Examine every single proof in
turn; eventually one will come across a proof of T (n) or T ′(n), depending on
whether the nth machine halts or not. In either case, the problem is settled.
But as we know, the Halting Problem is undecidable, and so there must be
n for which T ′(n) is undecidable.7

One final note

Before getting back to geometry, we pause for one final technical note. It
would be crazy to have a different computer for each possible task that we
might face! Instead, of course, we use a general purpose machine that can
be programmed to carry out any computation we might wish to (assuming
we have sufficient memory and time!)

In the same way, there are more general purpose, “universal” Turing
machines that can be “programmed” to carry out any computation. In
effect, the programmed instructions it should follow appear in a special
region of the tape. In fact, if you think about it, this is exactly the way that
you or I carried out the instructions given in the tables above: we have one
region for writing and reading. At each step, we keep track of where we are
on this portion of the tape, but make a quick run over to the table to look
up what we should do next based on where we are now. It is not so difficult,
really, to create a machine that can carry this out— if we are not trying to
be terribly efficient about it.

7In fact, there must be infinitely many such n. Can you see why?

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007



34CHAPTER 3. A BRIEF INTRODUCTION TO THE THEORY OF COMPUTATION

However, there are some remarkably simple universal Turing machines.
In 2007, Alex Smith proved that this very simple machine is universal, win-
ning a prize offered by Stephen Wolfram: [?]

A B

0 1LA 2RA

1 0LA 0RB

2 1RB 0LA

[[Consequently, all of our results carry over to this simple machine: no
halt state, so halting problem doesn’t quite apply]]

But what does this have to do with mathematics as a whole? Are these
phenomena special and isolated? One of the aims of this book is to ex-
plore how these issues play out in what might be considered recreational
mathematics. After all, the topics in the first two chapters of this book are
not so difficult— and yet, as we shall see, they touch on the foundation of
mathematics.

And, really, there is nothing particularly special about tilings (or for
that matter Turing machines). Everywhere in mathematics we see the same
phenomenon rearing up— inscrutability and undecidability lurk in every
corner.

Mathematicians, though, necessarily avoid such intractable topics; after
all, what is the point of asking questions for which there can be no answer?

In some real way, though, it is as if there are small islands of decidable
truth in vast unknowable seas. The strength of a mathematician, in large
part, is measured by an ability to navigate towards shore. Nonetheless, some
are attracted to the untamable stormy waters.

Draft: Tiling and Computation, © Chaim Goodman-Strauss, 2007




