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The Halting Problem
Alan Turing simultaneously demon-
strated limits of mathematical truth, 
and invented the idea of a general 
purpose computer,  and invented 
programming, and invented com-
puter science, all at the age of 23. !

One part of his idea is that there can be mathemati-
cal problems that can never be solved by a mechani-
cal process. It’s not that people are too dumb to 
design a mechanical process to solve them. To the 
contrary:  no process can ever exist! And he showed 
how to prove this!!

The starting point is his Halting 
Problem: A given program P, fed 
some given data n, might run 
forever,  or it might halt. 

Simple enough.  So our question is: 
knowing a program, and knowing 
what data it’s being fed, how can we tell whether or 
not the program runs or ever or eventually halts?

An obvious thing to try: Run the program and find 
out.  If the program halts, all we have to do is wait to 
find out.

But what the program isn’t ever going to halt? We’ll never 
learn that this way! Even if we’ve waited one million years, 
maybe it’ll halt if we’d just wait another two minutes. Or 
maybe two minutes after that.... or maybe...

In many cases, we can work it out just by examining 
the program. In practice, this is what programmers 
actually do. But we are asking here for a fully general, 
mechanical procedure for deciding this question. A 
program!

This hypothetical “Halting Program” H would take in 
as data a program P and its input n, and answer: 

Will P halt on input n?

(P itself is data in this context; let’s make this distinc-
tion by writing P when it is a working program and p 
when it is data.)

Let’s simplify this just a bit. It’d 
be a lot easier if we just fed P 
into H by itself, and ask Turing’s

“Halting Problem”: 
    Will P halt on input p?

Fair enough.   But incredibly, Turing proved No Such H 
Can Exist. No general method of deciding whether or 
not a given program halts can ever exist! He proved 
the Halting Problem is “undecidable” .

That there are problems that will remain forever 
beyond mathematical analysis is truly staggering. 
Even more so, that mathematics can actually prove, 
mathematically,  that such problems exist!

How does it work? It’s surprisingly easy! Suppose 
some crank comes in claiming to have invented a 
halt-testing program H. This H would take as input p, 
and work out whether or not P halts on p.

 

Then all we have to do is find a way this is nonsensi-
cal. We can dismiss all cranks if we can always make 
such an H into nonsense. (This style of proof is called “Proof by 
contradiction”: assume the opposite of what you want to prove and 
show this reduces to nonsense. )

Here comes a crank, claiming to have discovered H.
We create a short-circuit like this. We make a new 
program G that uses (and abuses) H. 
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halt? Wait a sec 
and I’ll tell you!

I’ll feed P into H and find 
out whether P halts or 
not. If P does halt, I’ll go 
into a loop and keep 
myself busy forever. If P 
doesn’t halt, I’ll just stop.

G takes in p, and feeds it into H.  H will chew on this 
for a while, and then spit out an answer: either

P will halt on input p or 
P will not halt on input p

G then does something with this information. In the 
first case, if P does halt on input p, our G starts 
cycling around in an infinite loop, running forever.
In the second case, if P doesn’t halt, G just stops.

Now for the Kicker. 
Feed G into itself!! What does G do on input g?

Either G will halt on input g or it will not halt on input 
g.

Let’s see what happens:

We feed g into G, which asks H whether or not G halts 
on input g. If H says “yes, G halts” then G goes into an 
infinite loop and doesn’t halt! If H says “no,  G does 
not halt” then G stops. 

ZAP. No such G can exist! No such H can exist! 
Turing’s Halting Problem is Undecidable! 
 

yum

tastes weird 
but why not


