Archive for The Mathcast

Puzzles and Comments!

First, a note from G.McN. (I’ll always assume , incidentally, that emails we get are fair game for reposting! Let me know if otherwise)

::: The problem :::
You are at a store that sells 6 items of interest, each item costs 1-6 cents, but you do not know which item costs what. How do you purchase these items all at once (so one bill) and figure out the cost of each item?

::: The original solution :::
The answer given was to purchase:
– 1 of first item
– 10 of the second item

 – 100,000 of the sixth item.

Then you can look at the columns and find the price of each item. That is all true but the answer is not universal nor efficient.

::: Efficient solution – 6 items :::
Let say you have 6 items with 6 costs, it is more efficient to do it this way. Purchase:
– 1 of the first item
– 7 of the second item
– 49 of the third item
– 343 of the fourth item
– 2,401 of the fifth item
– 16,807 of the sixth item
The way you figure out the cost of each is playing a remainder game. So divide the cost by 16,807 cents and split the answer between the whole number and the remainder. The whole number is the cost of the sixth item. Take the remainder and divide by 2,401. Split the answer into the whole number and the remainder. The whole number is the cost of the fifth item. You can see where this is going …

Or, if you want to be fancy, you can take the bill and use a computer (because, to be honest, I am lazy) and convert it to base 7 (as opposed to our base 10 decimal system) and look at the columns.

This maybe being picky of me, but it is much cheaper. If every item can be 6 cents, it is at most $1,176.48 instead of $6,666.66. If every item has to be different, it is at most $1,143.81 instead of $6,543.21. Either way, I would not want to pay that bill …

::: Solution – universal :::
To be universal, let there be n items and i = {1, 2, … n} where i is specific item numbers.Then you purchase n^(i-1) of each item i. Then you can covert the answer into base i+1 and look at the columns.
The most you would pay would turn out to be (if every item could be the same price) n^(i-1) if everything has to be different prices then the sum of i*n^(i-1) over all i, but I do not know how to do that off hand.

 

That’s it! Further  comments below…

 

We also got this amusing note from J. Kaivosoja

Hi,

and greetings from a snowy Otaniemi, a university campus next to Helsinki, Finland.

Your latest vintage puzzle was, as you predicted, quite easy. [[…]]

I’ve got some puzzles for you, too. Feel free to use them in your podcast (and radio show) and/or on your site.

First, an easy one. How are these numbers arranged?
8 5 4 9 1 7 6 3 2 0
[spoiler] Quite easy – alphabetically. [/spoiler]

How about these?
8 2 3 6 4 0 7 5 9 1
[spoiler]Again, alphabetically, but this time in my native Finnish. I can imagine that’d be a real head-scratcher for anyone who doesn’t speak the language.[/spoiler]

This one I like to give to my friends. How are these letters arranged?
Y S U L E A M I K N G T H R Z
[spoiler]Very few people know them all by heart – these are the commuter train routes in the Helsinki region (I’m a public transport enthusiast, myself).
http://www.vr.fi/eng/aikataulut/reittikartat/lahiliikenne.shtml [/spoiler]

I’m not sure if this last one would work in radio – it might be a bit too visual. How are these letters arranged into two groups?
A   EF HI KLMN
—————
 BCD  G  J    O
[spoiler]The ones below the dotted line are those with curvy lines.[spoiler]

I absolutely love your podcast – it’s kept me entertained for many a dull bus ride, and I’ve tried some of the coin and card tricks you’ve shown on my family, many of whom have since expressed interest in the podcast. Keep up the good work!

Juho Kaivosoja
Espoo, Finland
(the j’s are soft)

 

Wow, thanks for the great emails!

Chaim

 

Comments (3)

GW/GV Math Factor Hits The Road!

We post last weeks encore presentation of GV. Mix Up At The Five And Dime, and then hit the road! Live updates from the Gathering For Gardner, G4G9 held this week in Atlanta! (Jeff learned he’s reporting when you did– apologies Jeff.)

Eugene Sargent and I will, among other things, be installing a 700 puzzle sculpture, 1 of N, shown here:

 

cubeseries8a

Unfortunately, I have not yet completely worked out just what the value of N is– has just been too busy for me.

Finally, we premiere James Greeson’s Canon and Chorale on Pi.

More soon!

Comments

Morris: The Meaning of LIFE is …..

what is the meaning

 

If LIFT = 17 and THIEF = 16 then what is LIFE?

Sorry, a silly one.

Comments (1)

GU. Number Freak!

niederman

Puzzler Derrick Niederman tells us about his new book, Number Freak: From 1 to 200, the hidden language of numbers revealed, full of lore, mathematical amusements and numerical tidbits! 

Comments (1)

GT. The Largest Escher Exhibit Ever

The world’s largest ever exhibit of Escher’s works is on display, right now, at the Boca Raton Musuem of Art If you can, this is a must see event! We talk with the collector, Rock J. Walker about his fascination with this amazing work.

 

And of course we answer last week’s puzzle, and hear from listeners!

 

 

Comments (2)

GP, GQ, GR, GS: The Math Factor Catches Up (For Now)

A bit lazy, but we’re pretty far behind. Herewith, are

GP: Switcheroo!
GQ: Durned Ants
GR: VIth Anniversary Special
GS: I Met a Man

Comments (9)

Yoak: Wheel Whepair

A woodworker has a disc of wood, perfectly round, an inch thick and ten inches in diameter.  He wants to make it a wheel and so prepares to drill a one inch hole in the exact center.  Sadly, an ill-timed catastrophic sneeze causes him to drill the hole two inches off-center.  Undaunted, he pulls out his mathematically perfect laser saw (which can make perfect, zero-width cuts in wood) and his mathematically perfect glue (which can glue surfaces together with zero distance between them).  He cuts a piece of the wheel away, glues it back in a different position, and he has exactly the wheel he wanted to begin with.  How does he accomplish this?

 

Comments (8)

Yoak: Pirate Treasure Map

Our band of intrepid pirates, having resolved previous squabbles over distributing booty amongst themselves and other issues have come across a treasure map fragment.  The picture has been destroyed, but the following text can be read:

Stand upon the gravesite and you’ll see two great palms towering above all others on the island.  Count paces to the tallest of them and turn 90 degrees clockwise and count the same number of paces and mark the spot with a flag.  Return to the gravesite and count paces to the second-tallest of the trees, turn 90 degrees counter-clockwise and count off that number of paces, marking the spot with a second flag.  You’ll find the treasure at the mid-point between the two flags.

Fortunately, our pirates knew which island the map referred to.  Sadly, upon arriving at the island, the pirates discovered that all evidence of a gravesite had faded.  The captain was preparing to order his men to dig up the entire island to find the fabled treasure when one of the more geometrically inclined pirates walked over to a particular spot and began to dig.  The treasure was quickly unearthed on that very spot.

How did the pirate know where to dig?

 

Comments (18)

GO. More Coin Fraud

In this segment, we give some explanation of how Benford’s Law actually arises in so many settings: why are so many kinds of data logarithmically distributed? And we give a surprising fact about runs of coin tosses, and a new puzzle. 

Comments (2)

GN. Benford’s Law

Benford’s Law is really quite amazing, at least at first glance: for a wide variety of kinds of data, about 30% of the numbers will begin with a 1, 17% with a 2, on down to just 5% beginning with a 9. Can you spot the fake list of populations of European countries?

  List #1 List #2
Russia 142,008,838 148,368,653
Germany 82,217,800 83,265,593
Turkey 71,517,100 72,032,581
France 60,765,983 61,821,960
United Kingdom 60,587,000 60,118,298
Italy 59,715,625 59,727,785
Ukraine 46,396,470 48,207,555
Spain 45,061,270 45,425,798
Poland 38,625,478 41,209,072
Romania 22,303,552 25,621,748
Netherlands 16,499,085 17,259,211
Greece 10,645,343 11,653,317
Belarus 10,335,382 8,926,908
Belgium 10,274,595 8,316,762
Czech Republic 10,256,760 8,118,486
Portugal 10,084,245 7,738,977
Hungary 10,075,034 7,039,372
Sweden 9,076,744 6,949,578
Austria 8,169,929 6,908,329
Azerbaijan 7,798,497 6,023,385
Serbia 7,780,000 6,000,794
Bulgaria 7,621,337 5,821,480
Switzerland 7,301,994 5,504,737
Slovakia 5,422,366 5,246,778
Denmark 5,368,854 5,242,466
Finland 5,302,545 5,109,544
Georgia 4,960,951 4,932,349
Norway 4,743,193 4,630,651
Croatia 4,490,751 4,523,622
Moldova 4,434,547 4,424,558
Ireland 4,234,925 3,370,947
Bosnia and Herzegovina 3,964,388 3,014,202
Lithuania 3,601,138 2,942,418
Albania 3,544,841 2,051,329
Latvia 2,366,515 1,891,019
Macedonia 2,054,800 1,774,451
Slovenia 2,048,847 1,065,952
Kosovo 1,453,000 984,193
Estonia 1,415,681 841,113
Cyprus 767,314 605,767
Montenegro 626,000 588,802
Luxembourg 448,569 469,288
Malta 397,499 464,183
Iceland 312,384 402,554
Jersey (UK) 89,775 94,679
Isle of Man (UK) 73,873 43,345
Andorra 68,403 41,086
Guernsey (UK) 64,587 34,184
Faroe Islands (Denmark) 46,011 32,668
Liechtenstein 32,842 29,905
Monaco 31,987 22,384
San Marino 27,730 9,743
Gibraltar (UK) 27,714 7,209
Svalbard (Norway) 2,868 3,105
Vatican City 900 656

 Looking at these lists we have a clue as to when and how Benford’s Law works. [spoiler]

In one of the lists, the populations are distributed more or less evenly in a linear scale; that is, there are about as many populations from 1 million to 2 million, as there are from 2 million to 3 million, 3 million to 4 million etc. (Well, actually the distribution isn’t quite linear,  because the fake data was made to look similar to the real data, and so has a few of its characteristics.)

The real list, like many other kinds of data, is distributed in a more exponential manner; that is, the populations grow exponentially (very slowly though) with about as many populations from 100,000 to 1,000,000; then 1,000,000 to 10,000,000; and 10,000,000 to 100,000,000. This is all pretty approximate, so you can’t take this precisely at face value, but you’ll see in the list of real data that, very roughly speaking, in any order of magnitude there are about as many populations as in any other– at least for a while. 

Data like this has a kind of “scale invariance”, especially if this kind of pattern holds over many orders of magnitude. What this means is that if we scale the data up or down, throwing out the outliers, it will look about the same as before. 

The key to Benford’s Law is this scale invariance. Data that has this property will automatically satisfy his rule. Why is this? If we plot such data on a linear scale it won’t be distributed uniformly but will be all stretched out, becoming sparser and sparser. But if we plot it on a logarithmic scale, (which you can think of as approximated by the number of digits in the data), then such data is smoothed out and evenly distributed. 

But presto! Look at how the leading digits are distributed on such a logarithmic scale!

log

That’s mostly 1’s, a bit fewer 2’s, etc. on down to a much smaller proportion of 9’s.

[/spoiler]

Comments (7)

The Math Factor Podcast Website


Quality Math Talk Since 2004, on the web and on KUAF 91.3 FM


A production of the University of Arkansas, Fayetteville, Ark USA


Download a great math factor poster to print and share!

Got an idea? Want to do a guest post? Tell us about it!

Heya! Do us a favor and link here from your site!